

Potenzialità e Complessità delle Applicazioni di CNT

Prof. Attilio Citterio Dept. CMIC

A few nanometers

Single-walled carbon nanotubes (SWNT)

Tensile strength 150 GPaYoung's modulus 1 TPa

Field emission propertiesExpansion and contraction

upon charge injection (~1%)Semi-conducting nanotubes

Photo-electrical properties

Anisotropic material

• Electrical resistivity 10⁻⁴ ohm cm

Maximum current density 10¹³ A·cm⁻²
Thermal conductivity > 3000 W·K⁻¹·m⁻¹

• High specific surface (> 1000 m²·g⁻¹)

A few tens of nanometers *Multi-walled carbon nanotubes (MWNT*)

Decoration of CNT by Organized Carbon Atoms

Fullerene peapods: chains of C60 inside single-wall carbon nanotubes

Carbon *NanoBud*

Graphenated carbon nanotubes by microwave plasma enhanced CVD

CNT: MacroMolecules or Materials?

Fields of Application of CNT

CNT in Polymeric materials

- Multifunctional composite fillers
- Mechanical (strength) improvement
- Electrical conductive/antistatic composites
- Thermal conductive composites
- Fire retardancy
- Oxidation stable composites
- UV/visible stable composites

Polymeric Coating

- Conductive transparent films (pol.)
- Improve toughness, hardness, abrasion resistance films

FIGURE 1-3 Production primary and secondary structure for the Boeing 777, an example of 1990s commercial amplication of commonities

Attilio Citterio

CNT in Biomedicine

- Biosensing
- Tissue Engineering
- Drug Delivery

CNT in Electrochemical systems

- Litium battery
- Fuel cells
- Electric double-layer capacitor
- Sensors

Textile applications

- Shielding textiles (decontaminating, superhydrophobic, fire retardant, adhesive, anti staining)
- Vital functions monitoring (sensors)
- EM waves shielding textiles

POLITECNICO DI MILANO

8

Active and passive organic devices: O-TFT, IC, sensors, C, antenna, ...)

Multi functional organic systems

Organic power supply (photovoltaics, battery, ...)

Organic displays (OLED, electrochromic, electrophoretic,...) Organic Microsystems (lab-on-a-chip, ...)

Biological sensors

Attilio Citterio

Scaffolds for Tissue Engineering

Drug delivery

CNT are **complex materials characterized by different structure**, **topology, size, and presence of impurities and defects**. The synthetic method used dictates CNT properties such as the distribution of diameters and lengths, degree of entanglement, defects, chirality, and crystallinity, as well as the overall quality of the product. They must be considered as inorganic defective 2D materials.

Key factors in CNT

- Nanostructure*
- Particles concentration*
- Particle size/distribution*
- Particle number
- Aggregation/agglomeration*
- Surface absorbability*
- Surface areas*
- Surface charge*
- Self-assembly*
- Quantum effects
- Tube ends
- Metal/molecule encapsulation

Attilio Citterio

Various orientations of CNTs grown using chemical vapor deposition on Si substrates: (a) entangled, randomly orientated CNTs; (b) vertically aligned CNTs; (c) dense "dandelion-like" CNT structure grown using plasma-enhanced chemical vapor deposition on an etched, catalyst-free Si substrate.¹

Degree of self assembling MWCNT (d) bundle, (e) local bundle, (f) exfoliated.²

¹ S. Kumar, I. Levchenko, K. Ostrikov, and J. A. McLaughlin, *Carbon*, vol. 50, no. 1, pp. 325–329, 2012. ² Mazzocchia, Citterio Tito, Nanotechnè, Pau congress 2012

Distribution/Purification of Single-Walled Carbon Nanotubes by Capillary Electrophoresis (CE)

Stephen K. Doorn et al. J. Am. Chem. Soc. 2002, 124 (12), pp 3169–3174

FEATURES:

- CNT bundles exfoliation
- CNT properties retained
- Homogeneous/stable suspensions
- Low viscosity
- Highly concentrated formulations
- Ready to use

PROPERTIES:

- Electrical conductivity
- Impact resistance & stiffness
- Strength
- Thermal conductivity

Controlled manipulation

- Spray
- Screen printing of CNT composite paste
- Ink jet
- Electrophoretic deposition
- Self alignment

Ar-COOH functionalized MWCNT vs. pH (H_2O)

Chitosan wrapped MWCNT at pH 7

- Electronics-grade purity
- Surfactant-free formulation
- Benign solvent system

*	Covalent	Noncovalent	
Solubility	Organic and Aqueous Solubility	Organic and Aqueous Solubility (Reversible)	
Binding Int. Reversible under Harsh Cond.		Reversible with Varying Solvent Cond.	
Hybridization	sp ³	sp ²	
Conjugation	Decreased	Unaffected	
Electronic Prop. Altered		Unaffected	

(1) Covalent surface modifications	(a) b) c) d) e)	Acid purification/oxidation Oxigenated group derivatization Heteroatoms insertion and derivatizat Cycloaddition Isotope substitution	ion
(2) Noncovalent surface modification	$\begin{bmatrix} \alpha \\ b \\ c \\ c \\ d \end{bmatrix}$	$\pi-\pi$ stacking electrostatic interactions hydrogen bonding van der Waal's forces	

*Chen, R. J. et al. *J. Am. Chem. Soc.* **2001**, *123*, 3838-3839. Dai, H. *Acc. Chem. Res.* **2002**, *35*, 1035-1044. (1) H. C. Wu et al., *J. Mater. Chem.*, **2010**, *20*, 1. (2)

Chemical Functionalization of CNT: General Approaches

Polymer Wrapping and Ionic Liquids

Carboxy-derivatization and further amidation/CNTP fluorescent labeling

H. Xiao et al. Anal Bioanal Chem (2007) 387: 119-126

Functionalization of MWCNT via Arenediazonium Salts Decomposition

Attilio Citterio

Materials Science and Engineering B 152 (2008) 8–11 and ref. therein

The voltage at which the reaction occurs is proportional to pH
 Square Wave Voltammetry shows current spikes as reactions occur
 Therefore- this is a direct measurement of pH- Unlike old probes
 Sensor is internally referenced via an AIM**

Attilio Citterio

Beta-1: Linearity & pH Range

pH buffer standards

Attilio Citterio

Beta-1: Sensor Stability- pH vs. Time

- AQ-MWCNT* + PAQ-MWCNT + AIM + graphite + epoxy Mix to form carbon paste
- Carbon paste is packed and cured
- Sensor surface is then polished to a smooth finish

Problems in Analytical Methods for CNT Functionalization Detection

Method	Sample	Information	Limitations
TGA	solid	functionalization ratio	no evidence for covalent funct., not spec.
XPS	solid	elements, funct. Ratio	no evidence of covalent
			funct., not spec.,
			quantication complicated
Raman	solid	sp ³ indicated by D	not specific, quantica-
		mode	tion not reliable
Infrared	solid (ATR-	R) Subst. groups	no direct evidence for
	or solution		covalent funct., quantif. not possible
UV/visible	solution	Sidewall funct.	not specific or quanti-
			tative, need highly dis-
			persed sample
L. Zena. A. R. B	arron		

http://cnx.org/content/m22299/1.4/

Attilio Citterio

Method	Sample	Information	Limitations
Solution NMR	solution	substituents	no evidence of covalent
			functionalization, high
			solubility of sample
Solid state NMR solid		substituents, sp ³	high functionalization
		quant. at high fun.	needed, long time
			for signal acquisition
AFM	solid on	topography	only a small portion of
	substrate		sample characterized,
			no chemical identity
TEM	solid on	image of distri-	only a small portion of
	substrate	bution dispersion	sample characterized,
			no chemical identity
STM	solid on	distribution	no chemical identity
	substrate		conductive sample only

In 2010-12, the National Institute for Occupational Safety and Health presented guidelines for occupational exposure and indicated the safety level that did not result in tumorigenesis.1 NIOSH is recommending an exposure limit of 7 μ g·m⁻³ elemental carbon as an 8-h time-weighted average respirable mass airborne concentration.

The toxicity is again until investigation.^{2,3,4}

¹Bulletin NCI, 2010, <u>http://www.cdc.gov/niosh/docket/review/docket161a/pdfs/</u> <u>carbonNanotubeCIB_PublicReviewOfDraft.pdf</u>.

²H. Haniu, Y. Matsuda, K. Takeuchi, Y. A. Kim, T. Hayashi, and M. Endo, "Proteomics-based safety evaluation of multi-walled carbon nanotubes," *Toxicology and Applied Pharmacology*, vol. 242, no. 3, pp. 256–262, 2010.

³H. Haniu, N. Saito, Y. Matsuda, et al., "Effect of dispersants of multi-walled carbon nanotubes on cellular uptake and biological responses," International Journal of Nanomedicine, vol. 6, pp. 3295–3307, 2011. ibid. 3487-3497.

⁴T. Tsukahara and H. Haniu, "Cellular cytotoxic response induced by highly purified multi-wall carbon nanotube in human lung cells," *Molecular and Cellular Biochemistry*, vol. 352, no. 1-2, pp. 57–63, 2011.

Ecotoxycological Risk Assessment

Attilio Citterio

The cellular uptake pathways, subcellular localization and intracellular trafficking of differently functionalized CNTs. (a) Supermolecularly functionalized CNT via endocytosis, (b) covalently functionalized CNT bound with drugs via endocytosis, and (c) individual or specifically functionalized CNT via direct penetration

At present, catalytic MWCNTs and CNFs appear as the optimum choice, given that such materials can be most readily obtained in large quantities with a good to high purity.

But ... (some issues can/must be improved)

- These materials are intrinsically defective and wavy, both of which are expected to be highly detrimental to the mechanical performance
- Safe use must be identified and proved toxicity can be reduced by polar group insertion or wrapping with biocompatible polymers
- Their synthesis must be improved. Somehow nanotubes with a crystalline quality closer to arc-grown nanotubes need to be obtained at a cost similar, or indeed below, current CVD-grown product.
- Analytical issues must be targeted homogeneity control in CNT functionalization must be addressed
- The interactions of polymers with highly curved surfaces at the molecular scale, are still largely unknown.