

IDROGENO: PROSPETTIVE FUTURE E OPPORTUNITÀ PER IL MONDO DELL'INDUSTRIA E DELLA RICERCA

Matteo C. Romano
Politecnico di Milano, Dipartimento di Energia
Group of Energy Conversion Systems (GECoS)

12 Aprile 2022

I colori dell'idrogeno

DA ELETTRICITÀ

VERDE

Elettrolisi dell'acqua con energia elettrica rinnovabile

ROSA

Elettrolisi dell'acqua con energia elettrica nucleare

DA GAS NATURALE

GRIGIO

Steam methane reforming di gas naturale

BLU

Steam methane reforming con cattura e stoccaggio di CO₂ (CCS)

TURCHESE

Cracking di gas naturale

DA BIOMASSA

VERDISSIMO (???)

Da biomassa con CCS

Idrogeno verde

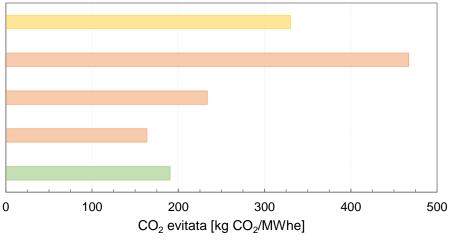
<u>Idrogeno da elettricità rinnovabile</u>:

- Emissioni zero
- Accumulo energetico
 - > vettore per trasporto di energia rinnovabile su lunghissime distanze
 - → accumulo stagionale

...ma:

 Meno efficace nella decarbonizzazione rispetto all'uso diretto di energia elettrica. Sostituzione produzione elettrica tradizionale

Pompa di calore (COP=2) vs. caldaia a gas


Resistenza elettrica vs. caldaia a gas

Combustione di idrogeno vs. combustione di gas

Idrogeno verde vs. H2 da gas naturale

VERDE

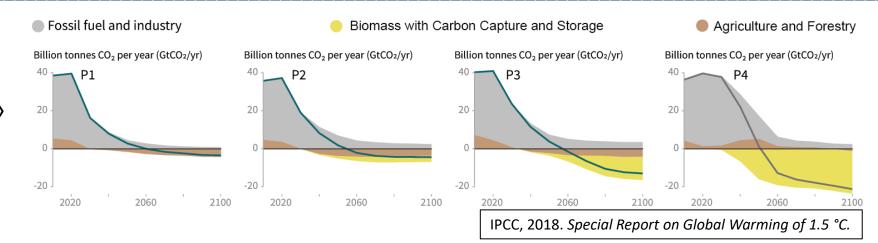
Elettrolisi dell'acqua con energia elettrica rinnovabile

Idrogeno blu

Idrogeno da gas naturale con CCS:

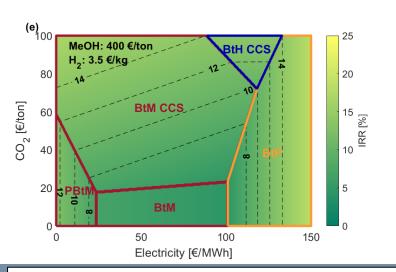
- Possibile tecnologia «ponte», in parallelo alla diffusione della produzione elettrica rinnovabile
- Produzione «dispacciabile» e utilizzabile anche per produzione elettrica

...ma:


- Richiede sviluppo di infrastruttura di trasporto e stoccaggio CO₂
- Emissioni non-zero:
 - Cattura CO₂ incompleta (>95% possibile)
 - Emissioni di metano dalla filiera: forte dipendenza dall'origine del gas

BLU

Steam methane reforming con cattura e stoccaggio di CO₂ (CCS)


Idrogeno da biomassa con CCS:

- Emissioni negative
- Produzione «dispacciabile»

...ma:

- Richiede sviluppo di infrastruttura di trasporto e stoccaggio CO₂
- Disponibilità limitata di biomassa, con diversi possibili utilizzi

Poluzzi et al., 2021. The Potential of Power and Biomass-to-X Systems in the Decarbonization Challenge: a Critical Review. Current Sustainable / Renewable Energy Reports (2021).