

Industria 4.0 Fondamenti e opportunità

P. Guazzotti, Responsabile Area Industria e Innovazione

17 marzo 2017

Piano Industria 4.0

Direttrici chiave

Investimenti innovativi

- Incentivare gli investimenti privati su tecnologie e beni 14.0
- Aumentare la spesa privata in Ricerca, Sviluppo e Innovazione
- Rafforzare la finanza a supporto di I4.0, VC e start-up

Competenze

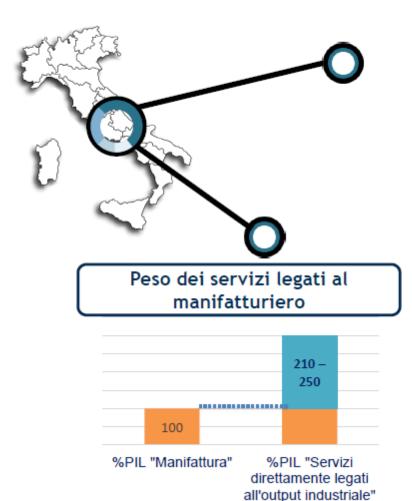
- Diffondere la cultura 14.0 attraverso Scuola Digitale e Alternanza Scuola Lavoro
- Sviluppare le competenze I4.0 attraverso percorsi Universitari e Istituti Tecnici Superiori dedicati
- Finanziare la ricerca 14.0 potenziando i Cluster e i dottorati
- Creare Competence Center e Digital Innovation Hub

Direttrici di accompagnamento

Infrastrutture abilitanti

- Assicurare adeguate infrastrutture di rete (Piano Banda Ultra Larga)
- Collaborare alla definizione di standard e criteri di interoperabilità IoT

Strumenti pubblici di supporto

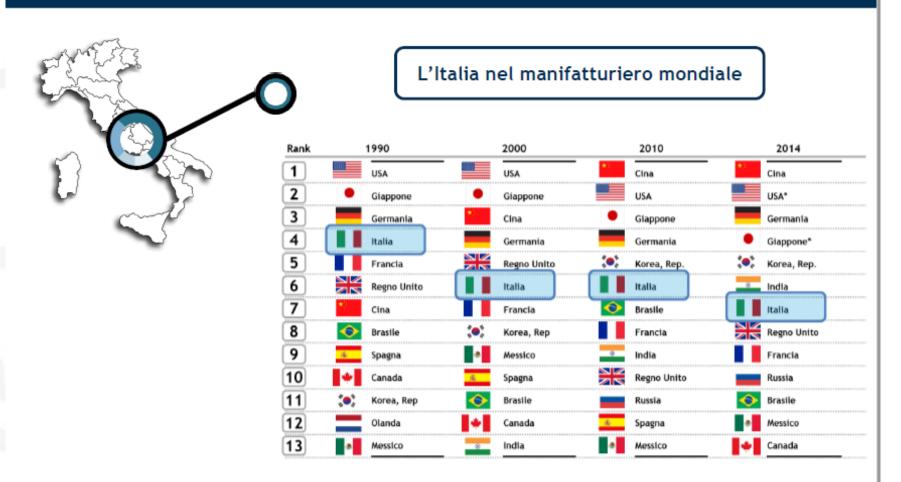

- Garantire gli investimenti privati
- Canalizzare il risparmio verso impegni produttivi
- Rafforzare e innovare il presidio di mercati internazionali
- Supportare lo scambio salarioproduttività attraverso la contrattazione decentrata aziendale

Governance e awareness

Sensibilizzare sull'importanza dell'14.0 e creare la governance pubblico privata

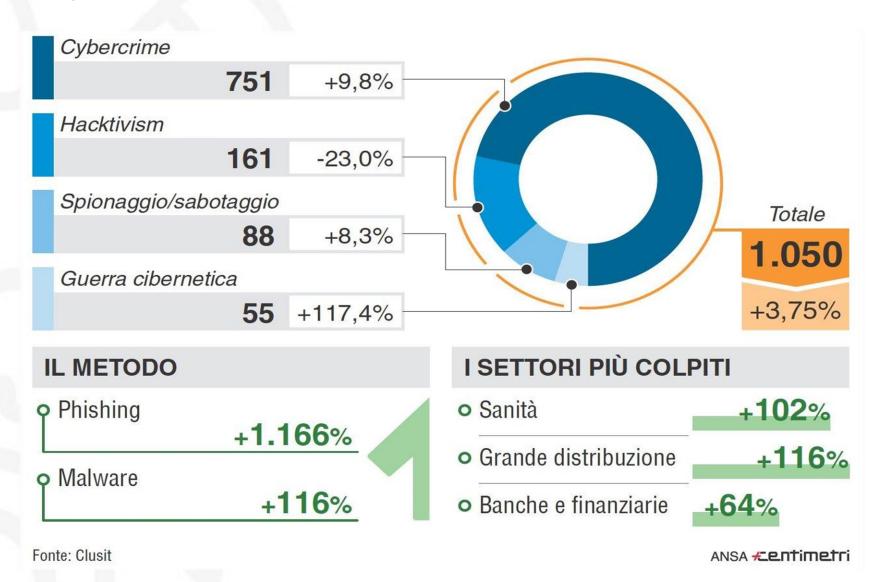
Perché parlare di Smart Manufacturing La rilevanza del tema

Incidenza del settore manifatturiero sul PIL - Anno 2014

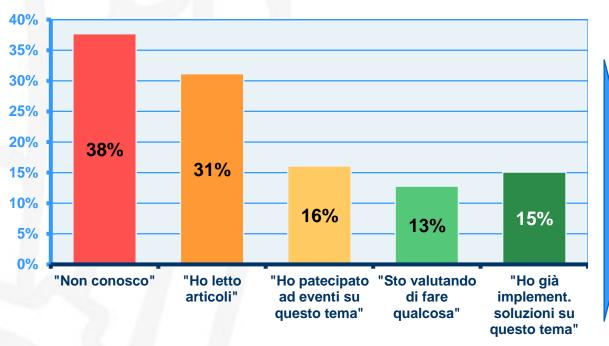


Media globale

Fonte Dati: The World Bank e Rapporto ISTAT 2015 *Ultimo anno con informazione disponibile (2013)


SSERVATORI.NET digital innovation

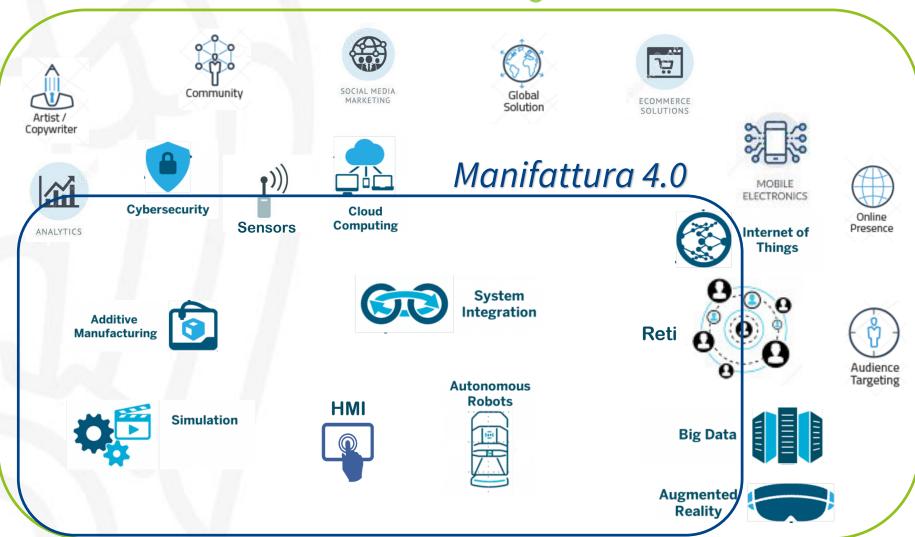
Perché parlare di Smart Manufacturing La rilevanza del tema


Fonte Dati: The World Bank
*Ultimo anno con informazione disponibile (2013)

Il Cybercrime nel 2016

Necessità della diffusione di Awareness: focus aziende manifatturiere

Autovalutazione sulla conoscenza del tema*



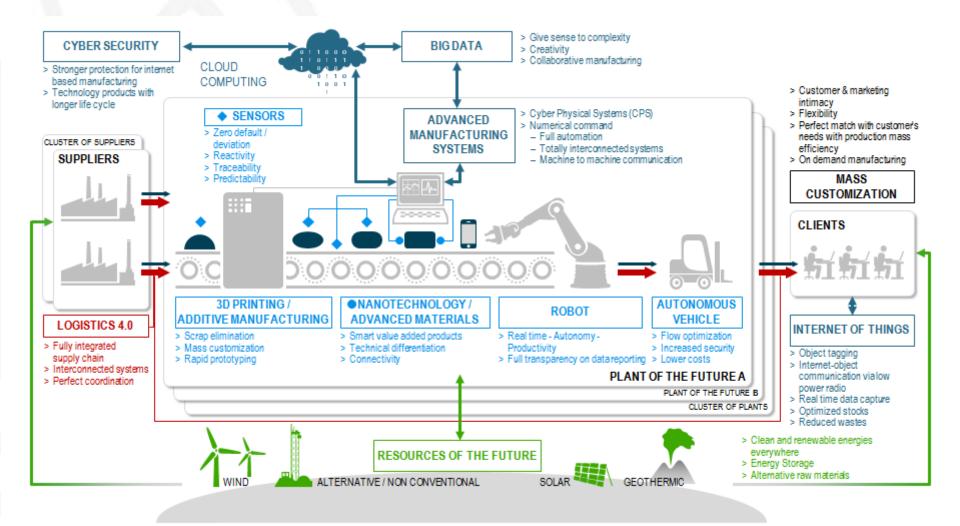
^{*}Valutazione qualitativa su campione non stratificato Campione: 305 aziende, domanda a risposta multipla. Survey Osservatorio Smart Manufacturing, **School of Management Politecnico di Milano**, giugno 2016.

Gli ambiti ed esempi applicativi

Digital transformation

Verde: trasformazione digitale relativa a tutte le funzioni d'impresa

Blu: focalizzazione sugli ambiti specificamente produttivi


Digital Transformation	ridisegnare l'offerta del proprio business per renderla più competitiva e più aderente alle aspettative del proprio mercato grazie alle tecnologie digitali
Industria 4.0	espressione diretta in ambito industriale della trasformazione digitale intesa come l'insieme dei cambiamenti associati all'utilizzo delle tecnologie digitali
Cyber Physical System	sistema interattivo che integra e connette macchinari, beni fisici, device di comunicazione, con capacità di autoapprendimento
Internet of Things (IOT)	uso della rete che consente l'interconnessione tra gli oggetti fisici tra loro, comunicando dati su se stessi e accedendo ad informazioni aggregate da parte di altri, e con le persone fisiche tramite dispositivi e computer
Sensore	dispositivo meccanico, elettronico o chimico, che in apparecchiature o meccanismi rileva i valori di una grandezza fisica e ne trasmette le variazioni a un sistema di misurazione o di controllo
System Integration	far dialogare impianti diversi tra di loro allo scopo di creare una nuova struttura funzionale che possa utilizzare sinergicamente le potenzialità degli impianti d'origine e creando quindi funzionalità originariamente non presenti

Big data	volumi massivi di dati non gestibili usando database o tecniche software tradizionali e per la cui elaborazione sono necessarie tecnologie particolari
Cloud computing	erogazione di risorse informatiche come l'archiviazione, l'elaborazione o la trasmissione di dati, caratterizzato dalla disponibilità on demand attraverso Internet a partire da un insieme di risorse preesistenti e configurabili
Cyber Security	ramo dell'informatica che si occupa delle analisi delle minacce, delle vulnerabilità e del rischio associato agli asset informatici, al fine di proteggerli da possibili attacchi (interni o esterni) che potrebbero provocare danni diretti o indiretti di impatto superiore ad una determinata soglia di tollerabilità
Data analytics	uso della rete che consente l'interconnessione tra gli oggetti fisici tra loro, comunicando dati su se stessi e accedendo ad informazioni aggregate da parte di altri, e con le persone fisiche tramite dispositivi e computer
Human Machine Interface (HMI)	dispositivi wearable e nuove interfacce uomo/macchina per l'acquisizione e/o la veicolazione d'informazioni in formato vocale, visuale e tattile

Big data	volumi massivi di dati non gestibili usando database o tecniche software tradizionali e per la cui elaborazione sono necessarie tecnologie particolari
Cloud computing	erogazione di risorse informatiche come l'archiviazione, l'elaborazione o la trasmissione di dati, caratterizzato dalla disponibilità on demand attraverso Internet a partire da un insieme di risorse preesistenti e configurabili
Cyber Security	ramo dell'informatica che si occupa delle analisi delle minacce, delle vulnerabilità e del rischio associato agli asset informatici, al fine di proteggerli da possibili attacchi (interni o esterni) che potrebbero provocare danni diretti o indiretti di impatto superiore ad una determinata soglia di tollerabilità
Data analytics	uso della rete che consente l'interconnessione tra gli oggetti fisici tra loro, comunicando dati su se stessi e accedendo ad informazioni aggregate da parte di altri, e con le persone fisiche tramite dispositivi e computer
Human Machine Interface (HMI)	dispositivi wearable e nuove interfacce uomo/macchina per l'acquisizione e/o la veicolazione d'informazioni in formato vocale, visuale e tattile

Machine Learning / Artificial Intelligence	L'apprendimento automatico rappresenta una delle aree fondamentali dell'intelligenza artificiale e si occupa della realizzazione di sistemi algoritmi che si basano su osservazioni come dati per la sintesi di nuova conoscenza
Manifattura additiva	modalità produttiva che consente la realizzazione di oggetti partendo dalla loro modellizzazione digitale, generando e sommando strati successivi di materiale
Realtà aumentata	arricchimento della percezione sensoriale umana mediante informazioni, in genere manipolate e convogliate elettronicamente, che non sarebbero percepibili con i cinque sensi
Robotica collaborativa	utilizzo di robot che possono interagire direttamente con gli esseri umani o entrare in contatto con essi in maniera sicura senza necessità di recinzioni perimetrali di sicurezza, condividendo lo stesso spazio di lavoro
Simulation	trasposizione in termini logico-matematica- procedurali di un "modello concettuale" della realtà

Complesso e interconnesso sistema globale

Fonte: Roland Berger

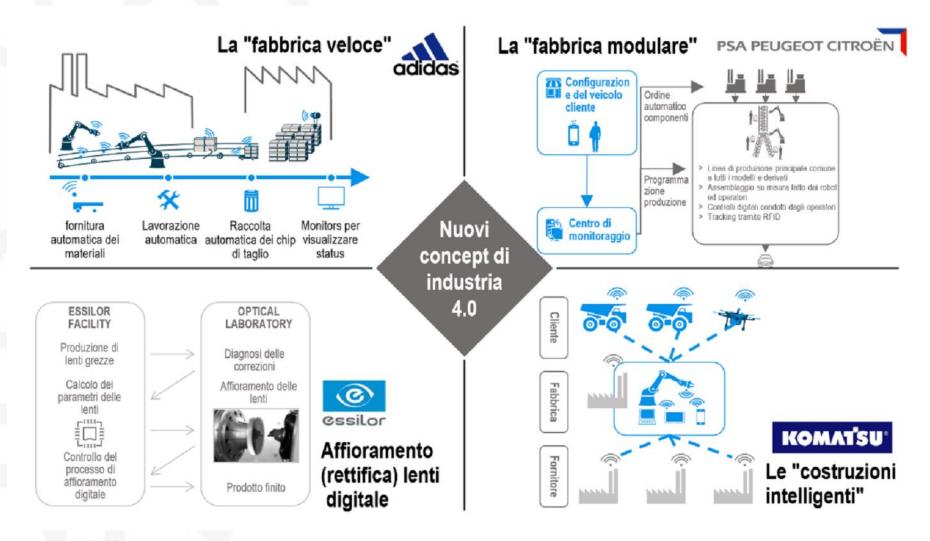
Benefici attesi

Maggiore **flessibilità** attraverso la produzione di piccoli lotti ai costi della grande scala

Migliore **qualità** e minori scarti mediante sensori che monitorano la produzione in tempo reale

Maggiore **velocità** dal prototipo alla produzione in serie attraverso tecnologie innovative

Maggiore **competitività del prodotto** grazie a maggiori funzionalità derivanti dell'Internet delle cose



Maggiore **efficienza e produttività** attraverso minori tempi di set-up, riduzione errori e fermi macchina

Il mondo di fare impresa è già cambiato

Ad oggi, in prevalenza sono i grandi operatori che danno vita ad alcuni progetti ed idee estremamente promettenti

Fonte: Roland Berger

Modelli industriali a confronto

Approccio Industriale Tradizionale	Nuovo Paradigma Industria 4.0
Economie di scala attraverso il volume	Economie di scala attraverso la conoscenza
La proliferazione di varianti di prodotto ha complessi costi nascosti	Diversificazione di prodotto economicamente sostenibile - "costo 1pz = costo 1000pz"
'Make to stock' in base alle previsioni di prodotto e quantità di ordini	'Make to order' in base alla pianificazione adattativa della produzione e dei prezzi
Il lancio di nuovi prodotti è fonte di costi di lancio	Il lancio continuo di nuovi prodotti è fonte di valore
Localizzazione dell'impatto dei LCC (life cycle costs) legato a grossi impianti di produzione	Impatti di prossimità
Impianti di grandi dimensioni unici	Network di unità produttive piccole e decentrate divise per tecnologia
Intensità di capitale medio/bassa – bassi margini	Elevata intensità di capitale – alti margini
Prevalenza di blu collar	Prevalenza di white collar

Roadmap Industria 4.0

Industria 4.0 è un lungo viaggio le tecnologie raggiungeranno la maturità del mercato in **10 ~ 15 anni**

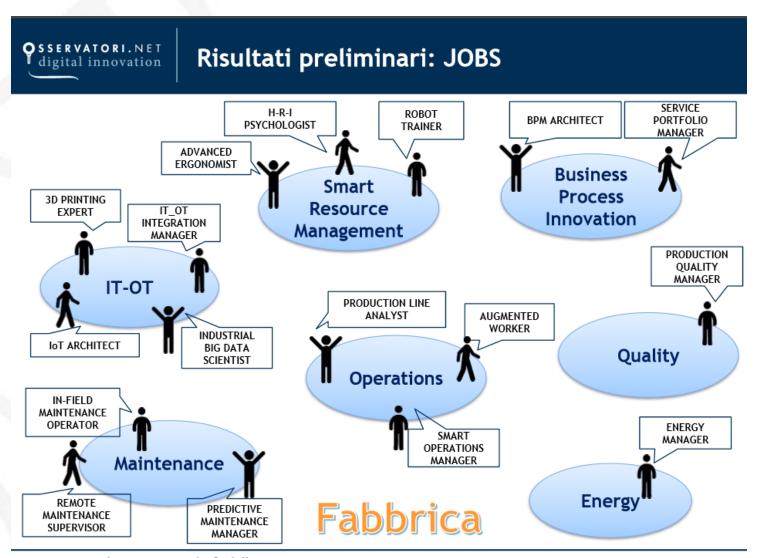
Transizione alla vera Industria 4.0

 L'infrastruttura di connettività sarà adattata alle nuove esigenze e agli standard

Diffusa adozione di soluzioni standard

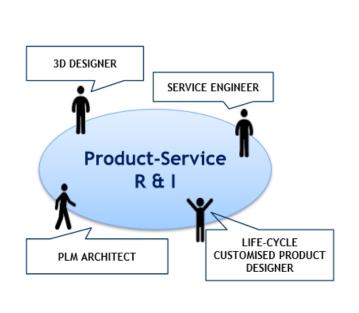
• La penetrazione del mercato con soluzioni isolate porterà ad una interconnessione di molte soluzioni attraverso i canali di connettività esistenti – Inizierà una graduale sostituzione dei macchinari

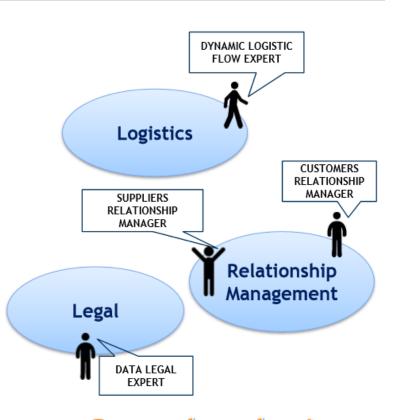
Impianti pilota completi


 Casi di utilizzo di Industria 4.0 nel medio termine guidati principalmente dalla tecnologia; saranno sviluppate soluzioni pilota in scala completa dell'impianto

Soluzioni Pilota

 Soluzioni a malapena esistenti come prodotti sul mercato soprattutto vetrine o soluzioni di laboratorio in via di sviluppo


Job & Skills 4.0



Job & Skills 4.0

SSERVATORI.NET digital innovation

Risultati preliminari: JOBS

Ciclo di Vita

Supply chain

Industria 4.0

ASSOLOMBARDA

OBIETTIVI RAGGIUNTI da ASSOLOMBARDA su INDUSTRY 4.0 in 12 mesi

Produrre una base di conoscenza per i decisori aziendali e i policy maker prefigurando una visione di sviluppo e proposte concrete per realizzarla Sostenere il posizionamento di Assolombarda e del suo territorio quale ambito di elezione per l'attività industriale e l'innovazione

Sensibilizzare e supportare le imprese

AZIONI

Attivare un **Advisory Board Manifattura 4.0**per indirizzare il
progetto e garantire la
qualità delle proposte

Elaborare lo scenario anche attraverso le analisi degli output di **focus group** con 50 aziende target Partecipare a gruppi di lavoro ed approfondimento nazionali sul tema 4.0: Federmeccanica, Confindustria Digitale,

Favorire e prendere parte a missioni di approfondimento (incoming e outgoing) sul 4.0 tedesco:

-Stoccarda e Monaco giu2016 -Monza e Milano, set/ott 2016 Partecipare ai lavori dei GdL del Ministro Calenda per la costruzione del piano nazionale Industria 4.0

OUTPUT

Elaborare il **Position Paper di Assolombarda su Industria 4.0**

Realizzare un **evento di grande visibilità** che richiami vertici delle istituzioni, rappresentanti imprenditoriali, opinion leader

Costruire un percorso di accompagnamento per le imprese: **workshop**, **visite** a champion, **videointerviste** ad imprenditori e AD

Evoluzione del Progetto

 Progetto Strategico A1: «Sviluppo del Manifatturiero» con focus su Industria 4.0

- Manifattura 4.0
- Cybersecurity
- Digital Transformation
- Infrastrutture di Rete

Digital Innovation Hub (DIH)

www.assolombarda.it www.farvolaremilano.it www.assolombardanews.it

≫ @assolombarda

in company/assolombarda

AssolombardaTV